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ABSTRACT

Motivation: Imaging genetics is an emerging field that studies the

influence of genetic variation on brain structure and function. The

major task is to examine the association between genetic markers

such as single-nucleotide polymorphisms (SNPs) and quantitative

traits (QTs) extracted from neuroimaging data. The complexity of

these datasets has presented critical bioinformatics challenges that

require new enabling tools. Sparse canonical correlation analysis

(SCCA) is a bi-multivariate technique used in imaging genetics to iden-

tify complex multi-SNP–multi-QT associations. However, most of the

existing SCCA algorithms are designed using the soft thresholding

method, which assumes that the input features are independent

from one another. This assumption clearly does not hold for the ima-

ging genetic data. In this article, we propose a new knowledge-guided

SCCA algorithm (KG-SCCA) to overcome this limitation as well as

improve learning results by incorporating valuable prior knowledge.

Results: The proposed KG-SCCA method is able to model two types

of prior knowledge: one as a group structure (e.g. linkage disequilib-

rium blocks among SNPs) and the other as a network structure (e.g.

gene co-expression network among brain regions). The new model

incorporates these prior structures by introducing new regularization

terms to encourage weight similarity between grouped or connected

features. A new algorithm is designed to solve the KG-SCCA model

without imposing the independence constraint on the input features.

We demonstrate the effectiveness of our algorithm with both synthetic

and real data. For real data, using an Alzheimer’s disease (AD) cohort,

we examine the imaging genetic associations between all SNPs in the

APOE gene (i.e. top AD gene) and amyloid deposition measures

among cortical regions (i.e. a major AD hallmark). In comparison

with a widely used SCCA implementation, our KG-SCCA algorithm

produces not only improved cross-validation performances but also

biologically meaningful results.

Availability: Software is freely available on request.

Contact: shenli@iu.edu

1 INTRODUCTION

Brain imaging genetics is an emerging field that studies the

influence of genetic variation on brain structure and function.

Its major task is to examine the association between genetic

markers such as single-nucleotide polymorphisms (SNPs) and

quantitative traits (QTs) extracted from multimodal neuroima-

ging data (e.g. anatomical, functional and molecular imaging

scans). Given the well-known importance of gene and imaging

phenotype in brain function, bridging these two factors and

exploring their connections would lead to a better mechanistic

understanding of normal or disordered brain functions. The

complexity of these data, however, has presented critical bio-

informatics challenges requiring new enabling tools. Early stu-

dies in imaging genetics typically focused on pairwise univariate
analysis (Shen et al., 2010). Many recent studies turned to regres-

sion analysis for exploring the joint effect of multiple SNPs on

single or few QTs (Hibar et al., 2011) and bi-multivariate ana-

lyses for revealing complex multi-SNPs–multi-QTs associations

(Chi et al., 2013; Lin et al., 2014; Vounou et al., 2010; Wan et al.,

2011).

Canonical correlation analysis (CCA), a bi-multivariate

method, has been applied to imaging genetics applications. It

aims to find the best linear transformation for imaging and gen-
etics features so that the highest correlation between imaging and

genetic components can be achieved. Based on the assumption

that a real imaging genetic signal typically involves a small

number of SNPs and QTs, sparse canonical correlation analysis

(SCCA) has also been applied in several imaging genetic studies

by imposing the Lasso regularization term to yield sparse results

(Chi et al., 2013; Lin et al., 2014; Wan et al., 2011). However,

most existing SCCA algorithms are designed using the soft

thresholding technique, which assumes that the input features

are independent from one another (Tibshirani, 1996). This as-

sumption clearly does not hold for the imaging genetic data [e.g.

the existence of the structural and functional networks in the

brain and the linkage disequilibrium (LD) blocks in the genome].

Directly ignoring the covariance structure in the data will inev-

itably limit the capability of yielding optimal results.
In this article, we propose a new knowledge-guided SCCA

algorithm (KG-SCCA) to overcome this limitation as well as

to aim for improving learning results by incorporating valuable

prior knowledge. The proposed KG-SCCA method is able to

model two types of prior knowledge: one as a group structure

(e.g. LD blocks among SNPs) and the other as a network struc-

ture (e.g. gene co-expression network among brain regions). The

new model incorporates these prior structures by introducing

new regularization terms to encourage similarity between

grouped or connected features. A new algorithm is designed to

solve the KG-SCCA model without imposing the independence*To whom correspondence should be addressed.
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constraint on the input features. We demonstrate the effective-

ness of our algorithm with both synthetic and real data. For real

data, using an Alzheimer’s disease (AD) cohort, we examine the

imaging genetic associations between all SNPs in the APOE gene

(i.e. top AD gene) and amyloid deposition measures among cor-

tical regions (i.e. a major AD hallmark). In comparison with a

widely used SCCA implementation in the PMA software pack-

age (http://cran.r-project.org/web/packages/PMA/) (Witten et al.,

2009), our KG-SCCA algorithm produces improved cross-

validation performances aswell as biologicallymeaningful results.

2 MATERIALS AND DATA SOURCES

To demonstrate the proposed KG-SCCA algorithm, we apply it

to an amyloid imaging genetic analysis in the study of AD.

Deposition of amyloid-� in the cerebral cortex is a major hall-

mark in AD pathogenesis. Our prior studies (Ramanan et al.,

2014; Swaminathan et al., 2012) performed univariate genetic

association analyses of amyloid measures in a few candidate cor-

tical regions of interest (ROIs), and identified several promising

hits including rs429358 in APOE, rs509208 in BCHE and

rs7551288 in DHCR24. In this work, using the proposed KG-

SCCA algorithm, we perform a bi-multivariate analysis to exam-

ine the association between all the available SNPs (58 in total) in

the APOE gene (i.e. the top genetic risk factor for late onset AD)

and 78 ROIs across the entire cortex. We use two types of prior

knowledge in this analysis: (i) a group structure is imposed to the

SNP data using the LD block information (Fig. 4), and (ii) a

network structure is imposed to the amyloid imaging data by

computing an amyloid pathway-based gene co-expression net-

work in the brain using Allen Human Brain Atlas (AHBA;

Zeng et al., 2012). Below, we first describe our amyloid imaging

and genotyping data, and then discuss our method for creating

the amyloid pathway-based gene co-expression network in the

brain.

2.1 Imaging and genotyping data

The proposed algorithm, KG-SCCA, was empirically evaluated

using the amyloid imaging and genotyping data obtained from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data-

base (adni.loni.usc.edu). One goal of ADNI has been to test

whether serial magnetic resonance imaging (MRI), positron

emission tomography (PET), other biological markers and clin-

ical and neuropsychological assessment can be combined to

measure the progression of mild cognitive impairment (MCI)

and early AD. For up-to-date information, see www.adni-info.

org. Preprocessed [18F]Florbetapir PET scans (i.e. amyloid ima-

ging data) were downloaded from LONI (adni.loni.usc.edu).

Before downloading, images were averaged, aligned to a stand-

ard space, resampled to a standard image and voxel size,

smoothed to a uniform resolution and normalized to a cerebellar

gray matter reference region resulting in standardized uptake

value ratio images as previously described (Jagust et al., 2010).

After downloading, the images were aligned to each participant’s

same visit MRI scan and normalized to the Montreal

Neurological Institute (MNI) space as 2� 2� 2mm voxels

using parameters from the MRI segmentation. ROI level amyl-

oid measurements were further extracted based on the MarsBaR

AAL atlas. Genotype data of both ADNI-1 and ADNI-2/GO

phases were also obtained from LONI (adni.loni.usc.edu). All

the APOE SNPs were extracted based on the quality controlled

and imputed data combining two phases together. Only SNPs

available in Illumina 610Quad and/or OmniExpress arrays were

included in the analysis. As a result, we had 58 SNPs located

within 10 LD blocks (Fig. 4) computed using HaploView

(Barrett, 2009). A total of 568 non-Hispanic Caucasian partici-

pants with both complete amyloid measurements and APOE

SNPs were studied, including 28 AD, 343 MCI and 196 healthy

control (HC) subjects (Table 1). Using the regression weights

derived from the HC participants, amyloid and SNP measures

were preadjusted for removing the effects of the baseline age,

gender, education and handedness.

2.2 Amyloid pathway-based gene co-expression network

in the brain

Because we examine cortical amyloid deposition in relation to

genetic variation, we hypothesize that amyloid pathway-based

gene co-expression profiles among cortical ROIs may provide

valuable information in search for APOE-related amyloid dis-

tribution pattern in the cortex. Thus, we used the brain tran-

scriptome data from the AHBA (Zeng et al., 2012), coupled

with 15 candidate genes from amyloid pathways studied in

(Swaminathan et al., 2012), to create such a brain network.

Gene expression profiles across the whole human brain were

downloaded from Allen Institute for Brain Science. One of their

goals is to advance the research and knowledge about neurobio-

logical conditions, with extensive mapping of whole-genome

gene expression throughout the brain. Among various organ-

isms, AHBA is one of the projects seeking to combine the gen-

omics with the neuroanatomy to better understand the

connection between genes and brain functioning. Gene expres-

sion profiles in eight health human brains have been released,

including two full brains and six right hemispheres. Details can

be found in www.brain-map.org.
Brain-wide expression data of all 15 amyloid-related candidate

genes, reported in (Swaminathan et al., 2012), were extracted

from AHBA to construct the brain network. Because an early

report indicated that individuals share as much as 95% gene

expression profile (Zeng et al., 2012), in this study, we only

included two full brains (H0351-2201 and H0351-2002) to con-

struct the co-expression network. First all the brain samples

(�900) in AHBA were mapped to MarSBAR AAL atlas,

which included 116 brain ROIs. According to Ramanan et al.

(2014), cortical ROIs are typically believed to hold the amyloid

Table 1. Participant characteristics

Subjects AD MCI HC

Number 28 343 196

Gender (M/F) 18/10 203/140 102/94

Handedness (R/L) 23/5 309/34 178/18

Age (mean� std) 75.23� 10.66 71.92� 7.47 74.77� 5.39

Education (mean� std) 15.61� 2.74 15.99� 2.75 16.46� 2.65
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signals, whereas other ROIs hold similar amyloidmeasures across

individuals. Thus, 39 pairs of bilateral cortical ROIs (78 in total),

from frontal lobe, cingulate, parietal lobe, temporal lobe, occipital

lobe, insula and sensory–motor cortex, were included in our ana-

lysis. Correlation among�900 brain locations was first calculated

based on the gene expression profile of 15 amyloid candidate

genes. Due to many-to-one mapping from the brain locations to

AAL ROIs, for each ROI, there are more than one connections,

represented by correlations between two brain locations.

Therefore, we calculatedROI-level correlations of two individuals

in five ways: minimum, maximum, mean, standard deviation and

median. In addition, the ROI correlation structure based on the

combination of both individuals was also generated in the same

way for comparison (Fig. 1). Clearly, for all five statistics, the

pattern remains highly consistent across individuals and their

combination. For simplicity, in the subsequent analysis, we

adopt the brain connectivity matrix generated from the combin-

ation sample using the median statistics (i.e. the panel in the lower

right corner of Fig. 1). Figure 2 shows a network visualization of

this matrix, where edges correspond to matrix entries with values

� 0:5 or � �0:5.

3 METHODS

Now we present our KG-SCCA algorithm. We denote vectors as bold-

face lowercase letters and matrices as boldface uppercase ones. For a

given matrix M=ðmijÞ, we denote its i-th row and j-th column as mi

and mj, respectively. Let X=fx1; :::; xng � <
p be the genotype data

(SNP) and Y=fy1; :::; yng � <
q be the imaging QT data, where n is the

number of participants, p and q are the numbers of SNPs and QTs,

respectively.

CCA seeks linear transformations of variables X and Y to achieve the

maximal correlation between Xu and Yv, which can be formulated as:

max
u;v

uTXTYv s:t: uTXTXu=1; vTYTYv=1 ð1Þ

where u and v are canonical loadings or weights, reflecting the significance

of each feature in the identified canonical correlation.

Similar to many machine learning algorithms, overfitting could arise

in CCA when the features outnumber the participants. In addition, the

CCA outcome could spread non-trivial effects across all the features

rather than only a few significant ones, making the results difficult to

interpret. To address these issues, SCCA was proposed in (Witten et al.,

2009) by introducing penalty terms, P1ðuÞ � c1 and P2ðvÞ � c2, to regu-

larize the weights, as shown in Equation (2).

max
u;v

uTXTYv

s:t: jjXujj22=1; jjYvjj22=1;P1ðuÞ � c1;P2ðvÞ � c2

ð2Þ

Here the objective function is bilinear in u and v: when u is fixed, it is

linear in v and vice versa. But due to the L2 equality, with u or v fixed, the

constraints are not convex. This can be solved by reformulating the L2

equality into inequality as jjXujj22 � 1 and jjYvjj22 � 1. For easy compu-

tation, Equation (2) is commonly rewritten in its Lagrangian form.

max
u;v

uTXTYv�
�1
2
jjXujj22 �

�2
2
jjYvjj22 � �1P1ðuÞ � �2P2ðvÞ ð3Þ

Witten et al. (2009) and Witten and Tibshirani (2009) explored two

penalty forms, L1 penalty and the chain structured fused Lasso penalty.

L1 penalty imposes sparsity on both u and v and assumes that each ca-

nonical correlation involves only a few features from X and Y. The fused

Fig. 1. Amyloid pathway-based gene co-expression networks among 78

AAL cortical ROIs constructed from AHBA using different statistics (see

different rows) for two individuals and their combination

Fig. 2. Network visualization by thresholding the connectivity matrix

shown in the lower right corner of Figure 1, where edges correspond to

matrix entries with values � 0:5 or � �0:5. The circle is symmetric (left

measures on left and right measures on right), from top to bottom are

frontal lobe, cingulate, parietal lobe, temporal lobe, occipital lobe, insula

and sensory–motor cortex
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Lasso penalty promotes the smoothness of weight vectors and encourages

neighboring features to be selected together. To incorporate other struc-

tures, group- and network-guided penalties were introduced (Chen and

Liu, 2012; Chen et al., 2013). As mentioned earlier, most of these methods

were designed using the soft thresholding technique, which was first pro-

posed to solve Lasso problem when the features were independent from

each other (Tibshirani, 1996). This condition does not hold in imaging

genetics data. Thus, direct application of those methods into imaging

genetics studies limits the capability of yielding optimal solutions.

Below, we first present our KG-SCCA model and then present an effect-

ive KG-SCCA algorithm without using the soft thresholding strategy.

Brain has been studied as a complicated network. The SNP data have

structures like LD blocks. Given these prior knowledge, we propose the

following KG-SCCA model by introducing two penalty terms for genetic

loadings u and imaging loading v, respectively.

P1=jjujjG=�1
XK1

k1=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i2�k1

u2i

s
+�1jjujj1

=�1
XK1

k1=1

jjuk1 jj2+�1jjujj1;

ð4Þ

P2=jjvjjN=�2
X
ði;jÞ2E
i5j

�ðwijÞjjvi � signðwijÞvjjj
2
2+�2jjvjj1

=�2jjCvjj
2
2+�2jjvjj1:

In penalty P1ðuÞ, SNPs are partitioned into K1 groups �1=f�k1 g
K1

k1=1,

such that fuig
mk1

i=1 2 �k1 , and mk1 is the number of SNPs in �k1 . While the

group term �1
XK1

k1=1

jjuk1 jj2 helps select all the SNPs in relevant LD blocks,

L1 penalty manages to suppress those non-signals within selected LD

blocks. The P1ðuÞ penalty is essentially the group Lasso penalty applied

to the CCA framework.

Penalty P2ðvÞ applies the network-guided constraint to encourage the

joint selection of ‘connected’ features (i.e. their connectivity matrix entry

having a high weight) as well as uses L1 to impose global sparsity. E is

the set of all possible imaging QT pairs and jEj is the total number of

QT pairs. C 2 <jEj�q is defined as follows. The row of C is indexed

by all pairs ði; jÞ 2 ði; jÞji 2 1; :::; q
� �

; j 2 1; :::q
� �

; i5 j
� �

; Cði;jÞ;i=wij and

Cði;jÞ;j=signðwijÞwij. �ðwijÞ provide the fusion effect that promotes similarity

between vi and vj of related features. In this article, we use �ðwijÞ=w2
ij. With

signðwijÞ we can have positively related features being pulled together and

on the other hand the negatively related features being fused with opposite

direction. Thus, for strongly connected features with a large fusion effect,

they tend to be jointly selected or jointly not selected.

In this work, as mentioned earlier, we formed the group structure for

the SNP data by partitioning them using LD blocks generated by

HaploView (Barrett, 2009). We formed the network structure for the

amyloid imaging data by constructing amyloid pathway-based gene co-

expression network using AHBA. Because the model could be easily ex-

tended to estimate multiple canonical variables, we only focus on creating

the first pair of canonical variables in this article.

Algorithm 1 Knowledge-guided SCCA (KG-SCCA)

Require:

X=fx1; :::; xng; Y=fy1; :::; yng, group and network structures

Ensure:

Canonical vectors u and v.

1: t=1, Initialize ut 2 <
p�1; vt 2 <

q�1;

2: while not converge do

3: Calculate B1t=
1
�1
Yvt

4: Calculate the block diagonal matrix D1t and D2t ;

5: ut+1=ðX
TX+ �1

�1
D1t+

�1
�1
D2t Þ

�1XTB1t ;

6: Scale ut+1 so that uTt+1X
TXut+1=1;

7: Calculate B2t=
1
�2
Xut+1;

8: Calculate the block diagonal matrix D4t ;

9: vt+1=ðY
TY+ �2

�2
D3+

�2
�2
D4t Þ

�1YTB2t ;

10: Scale vt+1 so that vTt+1Y
TYvt+1=1;

11: t=t+1.

12: end while

We now present our algorithm to solve this model without using soft

thresholding approach. By fixing u and v, respectively, we will have two

convex problems shown in Equation (5).

max
u

uTXTYv�
�1
2
jjXujj22 � �1

XK1

k1=1

jjuk1 jj2 � �1jjujj1

max
v

uTXTYv�
�2
2
jjYvjj22 �

�2
2
jjCvjj22 � �2jjvjj1

ð5Þ

Let B1=
1
�1
Yv and B2=

1
�2
Xu, the above problems can be reformulated

to Equation (6):

min
u

1

2
jjXu� B1jj

2
2+

�1
�1

XK1

k1=1

jjuk1 jj2+
�1
�1
jjujj1

min
v

1

2
jjYv� B2jj

2
2+

�2
2�2
jjCvjj22+

�2
�2
jjvjj1

ð6Þ

Here, while u can be solved by the G-SMuRFS method proposed in

(Wang et al., 2012), optimization of v can be achieved by the network-

guided L2;1 regression method proposed in (Yan et al., 2013). In both

solutions, a smooth approximation has been estimated for group L2;1 and

L1 terms by including an extremely small value. The solution for u and v

in each iteration step is as follows:

u=ðXTX+
�1
�1

D1+
�1
�1

D2Þ
�1XTB1;

v=ðYTY+
�2
�2

D3+
�2
�2

D4Þ
�1YTB2;

ð7Þ

where D1 is a block diagonal matrix with the k-th diagonal block as
1
kukkF

Ik; Ik is an identity matrix with size of mk; mk is the total feature

number in group k; D2 is a diagonal matrix with the i-th diagonal element

as 1
2kuik2

; D3 =CTC is a matrix in which each row integrates all the neigh-

boring relationships (e.g. for the i-th row, it is the sum of all the rows in �

whose i-th element is not zero); and D4 is a diagonal matrix with the i-th

diagonal element as 1
2kvik2

. Algorithm 1 summarizes the KG-SCCA opti-

mization procedure. Further details on how to solve for two objectives in

Equation (6) are available in (Wang et al., 2012) and (Yan et al., 2013),

respectively.

In Algorithm 1, six parameters �1; �2; �1; �2; �1; �2 need to be tuned

to control the global sparsity as well as structured group or network con-

straints. Chen and Liu (2012) studied a similar problem using a different

method, and found that their results were insensitive to �1; �2 settings.

Following their observation, we set �1 and �2 to 1 for simplicity. Nested

cross-validation can be used for parameter selection but will be extremely

time-consuming for the remaining four parameters. Thus, we followed the

strategy proposed in (Lin et al., 2014): parameters �1; �2 controlling struc-

tural constraints were first tuned without considering sparsity constraints.

Then based on the obtained optimal �1; �2, another nested cross-valid-

ation was performed to acquire the optimal �1; �2.

4 EXPERIMENTAL RESULTS AND DISCUSSIONS

We performed comparative studies between the proposed

KG-SCCA algorithm and a widely used SCCA implementation
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in the PMA package (http://cran.r-project.org/web/packages/
PMA/) (Witten et al., 2009). For PMA experiments, the SCCA
parameters were automatically tuned using a permutation

scheme provided in PMA. Below we report our empirical results
using both synthetic data and real imaging genetics data.

4.1 Results on simulation data

Because it was not straightforward to manually construct a
dataset with a network structure, we simulated group structures
for both datasets and then converted them into network struc-

tures for one dataset by connecting all the pairs within each
group. Synthetic data (n=200; p=200; q=150) with diagonal

block structure was generated with the following procedure: (i)
Random positive definite covariance matrix M with non-over-
lapping group structure was created, where correlations range

from 0.6 to 1 within group and are set to 0 between groups.
(ii) Dataset X with covariance structure M was calculated
through Cholesky decomposition. (iii) Repeat Steps 1 and 2 to

generate another dataset Y. (iv) With assigned canonical loadings
of X, we calculated the first component Xu. (v) Given a desired
correlation between components, we calculated the second com-

ponent Yv. (vi) For simplicity, in this article, only one group in Y

was assigned to have signals. Therefore, based on predefined

canonical loadings of Y and component Yv, final obtained

group signals, added with some white noises (Signal to Noise

Ratio (SNR)=0.5), will replace the data in original dataset Y.

By repeating this procedure we generated seven datasets with

correlation levels from 0.6 to 1. The canonical loadings and

group structure remained the same across all the datasets.

KG-SCCA and PMA have been both tested on all seven data-

sets. All the regularization parameters were optimally tuned

using a grid search from 10�2 to 102 through nested 5-fold

cross-validation, as mentioned before. The true and estimated

canonical loadings for both X and Y were shown in Figure 3.

Owing to the difference in normalization and optimization pro-

cedure, the weights yielded by KG-SCCA and PMA showed

different scales. Yet, the overall profile of the estimated u and

v values from KG-SCCA kept consistent with the ground truth

across the entire range of tested correlation strengths (from 0.6 to

1.0), whereas PMA was only capable of identifying an incom-

plete portion of all the signals. Furthermore, we also examined

the correlation in the test set computed using the learned models

from the training data for both methods. The left part of Table 2

demonstrated that KG-SCCA outperformed PMA consistently

Fig. 3. Five-fold trained weights of u and v. Ground truth of u and v are shown in the most left two panels. KG-SCCA results (top row) and PMA results

(bottom row) are shown in the remaining panels, corresponding to true correlation coefficients (CCs) ranging from 0.6 to 1.0. For each panel pair, the

five estimated u values are shown on the left panel, and the five estimated v values are shown on the right panel

Table 2. Five-fold cross-validation performance on synthetic data: mean� std is shown for estimated correlation coefficients and AUC of the test data

using the trained model

True Correlation coefficients (CC) AUC

CC KG-SCCA PMA P KG-SCCA:u PMA:u P KG-SCCA:v PMA:v

0.60 0.56� 0.12 0.31� 0.14 2.19E-03 0.83� 0.08 0.64� 0.02 3.36E-03 1.0� 0.00 1.0� 0.00

0.64 0.56� 0.1 0.51� 0.12 2.32E-02 0.96� 0.04 0.65� 0.01 2.20E-05 1.0� 0.00 1.0� 0.00

0.70 0.64� 0.1 0.53� 0.1 1.27E-05 0.99� 0.01 0.62� 0. 6.21E-08 1.0� 0.00 1.0� 0.00

0.77 0.7� 0.14 0.6� 0.14 6.62E-03 0.99� 0.01 0.62� 0. 9.67E-09 1.0� 0.00 1.0� 0.00

0.85 0.76� 0.08 0.65� 0.1 1.02E-04 0.98� 0.03 0.63� 0.01 4.57E-06 1.0� 0.00 1.0� 0.00

0.95 0.87� 0.04 0.67� 0.09 1.19E-03 1.00� 0.00 0.63� 0.01 1.39E-08 1.0� 0.00 1.0� 0.00

1.00 0.92� 0.04 0.71� 0.06 2.46E-04 1.00� 0.00 0.64� 0.01 4.02E-08 1.0� 0.00 1.0� 0.00

Note. P-value of paired t-test between KG-SCCA and PMA results are also shown.
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and significantly, and it could accurately reveal the embedded

true correlation even in the test data. The right part of Table 2

demonstrated the sensitivity and specificity performance using

area under ROC (AUC), where KG-SCCA also significantly

outperformed PMA no matter whether the correlation was

weak or strong in u. Because v is relatively simple structured,

both KG-SCCA and PMA can restore the signals without any

loss. From the above results, it is also observed that KG-SCCA

could identify the correlations and signal locations not only more

accurately but also more stably.

4.2 Results on real imaging genetic data

Both KG-SCCA and PMA have been performed on real amyloid

imaging and APOE genetics data. Similar to previous analysis,

5-fold nested cross-validation was applied to optimally tune the

parameters. Five experiments were performed with five different

partitions to eliminate the bias. For each single experiment, the

same partition was used for both KG-SCCA and PMA. Table 3

shows both the training and test performances of KG-SCCA and

PMA in all five folds of five experiments. Both methods demon-

strated stable results across five trials. KG-SCCA was observed

to outperform the PMA in every single experiment on both

training and test performance. Paired t-test was performed to

compare the performance across five experiments, and KG-

SCCA outperformed PMA significantly in both training

(P=3.08E-6) and test cases (P=8.07E-5). We also tested two

simplified KG-SCCA models: one with only the penalty term for

the LD structure and the other with only the penalty term for the

network structure. Interestingly, both performed similarly to the

original KG-SCCA, and significantly outperformed PMA.
Figure 4 demonstrates the canonical loadings trained from

5-fold cross-validation in one experiment, suggesting relevant

genetic (top panel) and imaging (bottom panel) markers.

Although LD block constraints were imposed on relevant SNP

markers, L1 penalty managed to exclude irrelevant signals. Only

APOE e4 SNP (rs429358) was identified to be associated with

amyloid accumulations in the brain. PMA also achieved a similar

pattern as KG-SCCA, but including a few additional SNPs from

multiple LD blocks. The bottom panel of Figure 4 shows the

canonical loading for the imaging data. Both methods identified

similar imaging patterns, which are in accordance with prior

findings (Ramanan et al., 2014). Figure 5 shows a brain map

of canonical loadings generated by KG-SCCA.

5 CONCLUSIONS

We have performed a brain imaging genetics study to explore the

relationship between brain-wide amyloid accumulation and gen-

etic variations in the APOE gene. Because most existing SCCA

algorithms are designed using the soft thresholding technique,

which assumes independence among data features, direct appli-

cation of these methods into brain imaging genetics study cannot

yield optimal results owing to the correlated imaging and genetic

features. We have proposed a novel KG-SCCA algorithm, which

not only removes the above independence assumption, but also

can model both the group-like and network-like prior knowledge

in the data to produce improved learning results. A comparative

study has been performed between KG-SCCA and PMA (a

widely used SCCA implementation) on both synthetic and real

data. The promising empirical results demonstrated that KG-

SCCA significantly outperformed PMA in both cases.

Furthermore, KG-SCCA could accurately recover the true sig-

nals from the synthetic data, as well as yield improved canonical

correlation performances and biologically meaningful findings

from real data. This study is an initial attempt to remove the

feature independence assumption many existing SCCA methods

have. The empirical studies designed here are targeted to identify

relatively clean and simple multi-SNP–multi-QT correlations.

Given only 58 SNPs analyzed here, this work is not a demon-

stration of a genome-wide analysis. Comparison with other com-

plex SCCA models, building scalable KG-SCCA models, and

applications to more complex imaging genetic tasks warrant fur-

ther investigation.

Table 3. Five-fold cross validation results on real data: the models learned from the training data were used to estimate the correlation coefficients

between canonical components for both training and testing sets

Method Train Test

f1 f2 f3 f4 f5 Mean f1 f2 f3 f4 f5 Mean

KG-SCCA exp1 0.471 0.448 0.475 0.451 0.46 0.461 0.431 0.515 0.401 0.417 0.459 0.445

exp2 0.476 0.453 0.454 0.476 0.461 0.464 0.402 0.505 0.503 0.401 0.458 0.454

exp3 0.476 0.474 0.474 0.468 0.402 0.459 0.408 0.393 0.413 0.435 0.565 0.443

exp4 0.468 0.466 0.459 0.46 0.466 0.464 0.441 0.409 0.47 0.476 0.445 0.448

exp5 0.49 0.502 0.434 0.449 0.447 0.464 0.35 0.297 0.584 0.527 0.528 0.457

PMA exp1 0.439 0.418 0.438 0.438 0.426 0.432 0.368 0.45 0.398 0.379 0.439 0.407

exp2 0.444 0.416 0.425 0.436 0.432 0.431 0.354 0.463 0.449 0.399 0.416 0.416

exp3 0.442 0.445 0.439 0.427 0.398 0.43 0.382 0.341 0.382 0.432 0.544 0.416

exp4 0.434 0.44 0.425 0.427 0.431 0.432 0.414 0.363 0.445 0.438 0.415 0.415

exp5 0.459 0.462 0.406 0.416 0.411 0.431 0.288 0.287 0.517 0.486 0.501 0.416

P-value 3.08E-6 P-value 8.07E-5

Note. P-values of paired t-tests were obtained for comparing KG-SCCA and PMA results.
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